Thermo- and Chemo-Dynamics of Simulated Galaxy Clusters

Stefano Borgani Dept. of Astronomy, University of Trieste (also INAF & INFN - Trieste)

- (I) X-ray scaling relations & ICM thermodynamics;
- (II) Including chemical evolution in simulations:
 - II.a Metal Enrichment of the ICM;
 - II.b Optical/near-IR properties of the galaxies.
- (III) The effect of AGN feedback.

Collaborators: K. Dolag, S. Ettori, D. Fabjan, G. Murante, E. Rasia, A. Saro, L. Tornatore

Different strategies to simulate clusters

SB, Dolag et al. 08; Dolag, SB et al. 08, for reviews

Examples with Tree+SPH GADGET-2; Springel '05

SB et al. '08

L= 75 h⁻¹ Mpc $N_{gas}=N_{DM}=512^3$ $\epsilon_{Pl}=2.1 h^{-1} \text{ kpc}$ SF + SN + metals

Dolag et al. '07

$$\begin{split} M &\sim 2~10^{15}~h^{\text{--}1}~M_{\odot}\\ N_{gas} &= N_{DM} \sim 10^{7}\\ \epsilon_{Pl} &= 2.5~h^{\text{--}1}~kpc\\ \text{SF + SN + metals} \end{split}$$

The mass-temperature relation

SB et al. 04 Rasia et al. '05

Use the βγ-model for the ICM + hydrostatic equilibrium: (Finoguenov et al. '01; Ettori et al. '03)

Nagai et al. '07

Carry out the same mass estimates as in Chandra data

(Vikhlinin et al. '05)

Good agreement between simulated and observed M-T, once hydrostatic mass estimates used in simulations.

The Luminosity-Temperature relation

Δαπè ετ αλ. '02: cooling only L_X -T relation reasonable, but up to 80% of baryons in stars for groups!

Muanwong et al '03: cooling + pre-heating
No much bending at the scale of groups.

SB et al '04: cooling + SF + galactic winds

- → ~ OK above 2 keV
- → Over-luminous groups and too small scatter.

The Temperature Profiles

Tornatore et al. '03; SB $\varepsilon \tau \alpha \lambda$. '04; Roncarelli et al. '07; Kay et al. '07: cooling + SF + galactic winds (SPH);

Loken et al. '02; Nagai $\varepsilon \tau \alpha \lambda$. '07: cooling + SF + SN feedback (AMR):

- Cooling steepens T-profiles at the centre;
- Wrong in the core regions
- OK at larger radii.

Pratt et al. '07; Leccardi & Molendi '08: analysis of XMM data.

Agreement with simulations outside the cool core region.

Hydro simulations of the ICM enrichment

Tornatore et al. '04, '07; Fabjan et al.'08 SB, Fabjan, Tornatore et al. '08 for a review

Implementation in the GADGET-2 code (Springel '05)

Model parameters:

- (a) IMF; a.1 Power-law IMF: φ(m) ~ m -(1+x) x=1.35: Salpeter 55; x=0.95:

 Arimoto Yoshii 89
 - a.2 Multi-slope IMF (Kroupa 01)
- (b) Stellar lifetimes: Padovani & Matteucci '93; Maeder & Meynet '89
- (c) Metallicity-dependent stellar yields (SN-Ia, SN-II and AGB)
- (d) Velocity of galactic winds: $v_w = 500 \text{ km s}^{-1}$ (normal winds) $v_w = 1000 \text{ km s}^{-1}$ (strong winds; AY IMF)

Simulated clusters: 9 Lagrangian regions (Dolag et al. '08) containing 19 "clean" clusters with $M_{vir} = (5x10^{13} - 2x10^{15} h^{-1}M_{sun})$

Maps of Iron distribution

Tornatore et al. '07

Salpeter IMF

Top-heavy IMF

Mock X-ray observations of ICM metallicity

Rasia et al. 2007

- 1 Ms exposure of a ~8 keV cluster
- \Rightarrow EW and spect. estimators of Z_{Fe} and Z_{Si} quite close to each other (unlike T_{ew} and T_{spec}).
- ⇒ Spect. measurement overestimates Z₀:
- Due to the multicomponent nature of the ICM.
- Bias related to the limited XMM spectral resolution.

Profiles of Iron Abundance

Fabjan et al. '08

- Vikhlinin et al. '05: Chandra observations of 16 nearby relaxed clusters
- 1. Agreement with the slope from Chandra data.
- 2. Preference for a standard Salpeter IMF
- 3. Flattening at >0.1R₅₀₀
 (XMM: Snowden et al. 07)
 never predicted
- Highly desirable: comparison btw Chandra & XMM results.

Evolution of the ICM metallicity

Observational data from Chandra archive:
Balestra et al. '07
Maughan et al. '08

- Metallicity evolution naturally produced.
- Test: halt by hand SF at z=1.
- → Metals produced at lower z by long-lived stars
- ⇒ Far too strong metallicity evolution
- ⇒ Need residual low-z SF to "eat" metals in high-density regions.

Evolution of the ICM metallicity

SF stopped at z=1

The Sn-la rate

Rate of Sn-Ia per unit B-band luminosity

Observational data:

z ~ 0: Mannucci et al. 07

z ~ 1.2: Sharon et al. 07

z ~ 0.2-0.9: Gal-Yam et al. 07

- ⇒ Salpeter IMF favoured by low-z data
- → Too high low-z rate from excess of recent SF
- ⇒ Better agreement if SF quenched at z<1.</p>

The Color-Magnitude Diagram

Saro et al. '06

- 1. The CMR is given by a metallicity sequence.
- 2. Closer to the observed relation for a Salpeter IMF
- 3. BCGs always much bluer than expected
- → Too much ongoing star formation in the BCGs
- → Need to quench SF at z<1.</p>

Feedback from BH accretion in GADGET

Springel, Di Matteo & Hernquist (2005).

 Bondi accretion rate (related to the large-scale properties of the gas distribution), with Eddington limit:

$$\dot{M}_{\rm B} = \frac{4\pi \alpha G^2 M_{\rm BH}^2 \rho}{\left(c_{\rm s}^2 + v^2\right)^{3/2}}$$

$$\dot{M}_{
m Edd} \equiv rac{4\pi\,G\,M_{
m BH}\,m_{
m p}}{\epsilon_{
m r}\,\sigma_{
m T}\,c}$$
 $\epsilon_{
m r} = rac{L_{
m r}}{\dot{M}_{
m BH}\,c^2}$: radiative efficiency

$$\epsilon_{\rm r} = \frac{L_{\rm r}}{\dot{M}_{\rm BH} c^2}$$

$$\dot{E}_{\rm feed} = \epsilon_{\rm f} \, L_{\rm r} = \epsilon_{\rm f} \, \epsilon_{\rm r} \, \dot{M}_{\rm BH} \, c^2$$
: thermalized energy

- Seed BHs with initial mass of 10⁵ M_o
- BHs accrete mass by swallowing of gas particles and merging.

The effect of AGN feedback

Sijacki et al. '07

- "Self-consistent" BH feedback"
- "QSO mode": lowefficiency thermal feedback
- "Radio mode": energy in inflating bubbles.

(see talk by E. Puchwein)

The effect of the BH feedback

Fabjan et al. '08

- Couple the BH feedback by Springel et al. '05 with the metal enrichment scheme.
- ⇒ Quench star formation at z<3</p>
- → Suppression of the temperature spike;
- Increase of the central entropy;
- ⇒ Flattening of the metallicity profiles for R>0.2R₂₀₀.

Producing the "cool core" structure

AGN feedback: phase diagram

 $M_{vir} = 1.0 \times 10^{14} h^{-1} M_{sun}$

Gas within 0.2 R_{vir}

- ⇒ Simulations naturally predict the lack of gas at T<0.5 T_{vir}
- → Galactic winds: bring gas on a lower adiabat;

Negative T-profiles still present

- → AGN feedback: strong suppression of central density
- ~ no trend of ρ_{gas} with T.

The effect of the BH feedback

Effect on the CMR:

- Make it bluer, due to lower metallicity of galaxies;
- BCGs older but still blue, due to a lower metallicity.

Need to model the transition from the QSO to the "radio" mode: more efficient to quench SF in BCGs!

Conclusions

- (a) Simulations are doing remarkably well outside cool-cores.
- (b) Inner temperature profiles & BCG colors ⇒ wrong cool cores.
- (c) Profiles and evolution of Z_{Fe} nearly OK.
 - → Shall we trust them until we have the right galaxies?
- (d) Suppress low-z star formation: required by the CMR and by the Sn-la rate.
 - Need to be gentle → Prevent too strong metallicity evolution.
- (e) AGN feedback goes in the right direction. BUT:
 - → Need to better understand cross-talk between widely different (~1 pc vs. >100 kpc) scales;
 - → Relative importance of different channels for energy thermalization.